

CHITOSAN BIOFILMS WITH ETHANOLIC EXTRACT OF *Libidibia ferrea* LEAVES: ANTIBACTERIAL POTENTIAL

Helena Carla Magalhães dos Reis^{1*}, Andreza S. de Jesus¹, Aiane N. Santana¹, Luis Filipe G. Santos¹, Maria Clara S. Sacramento¹, Caline G. Ferraz³, Vitor Hugo M.¹, Sandra Aparecida A. Lucas², Rodrigo L. Lavall², Isaac Matheus J. Silva³, Walter Nei L. Santos¹, Madson de G. Pereira¹, Lourdes C. de Souza Neta¹

hcarla01.hc@gmail.com

1-Departamento de Ciências Exatas e da Terra, Universidade do Estado da Bahia, R. Silveira Martins, 2555, Cabula, 41150-00, Salvador, Bahia, Brazil. 2-Universidade Federal de Minas Gerais, Belo Horizonte, Universidade do Estado de Minas Gerais, João Monlevade, Minas Gerais, 35930-314, Brazil. 3-Universidade Federal da Bahia, Av. Milton Santos - Ondina, Salvador - BA, 40170-110

Chitosan is widely used as a base for synthesizing biofilms with potential applications in food preservation and wound healing. Thus, combining medicinal plant extracts with chitosan to prepare biofilms is a strategy for discovering new antimicrobial materials. Given this context, were developed the synthesis and antimicrobial evaluation of biofilms from the ethanolic extract of *Libidibia ferrea* stem and its fractions in ethyl acetate and water. Antimicrobial assays were conducted against *Staphylococcus* sp, *Bacillus* sp, *Escherichia* sp, *Pseudomonas* sp, *Candida* sp by broth microdilution and agar diffusion methods. The chitosan film with the extract (FQEEt) and the crude extract (EEt) were active against *S. aureus*. [inhibition zone (IZ) of FQEEt = 1.41 ± 0.07 cm; IZ of crude EEt = 1.40 ± 0.1 cm]. However, the crude EEt also inhibited *B. cereus* [IZ = 1.40 ± 0.1 cm]. The chitosan films with fractions FFEtOAc and FFAQ inhibited *S. aureus* [IZ = 1.2 ± 0.1 cm] and *B. cereus* [IZ of FFEtOAc = FAQ = 1 ± 0.1 cm]. The pure chitosan film (100%) showed no antimicrobial effect. In the broth microdilution tests, the FAQ fraction was bacteriostatic against *S. aureus* [MIC = $500 \mu\text{g mL}^{-1}$] and bactericidal for *B. cereus* [MIC = MBC = $250 \mu\text{g mL}^{-1}$]. Meanwhile, the FFEtOAc fraction showed both effects for *S. aureus* [MIC = MBC = $500 \mu\text{g mL}^{-1}$] and *B. cereus* [MIC = $125 \mu\text{g mL}^{-1}$ and MBC = $250 \mu\text{g mL}^{-1}$]. Tetracycline showed MIC = MBC $\leq 7.8 \mu\text{g mL}^{-1}$ for both bacteria. The results demonstrated that the antimicrobial activity of the biofilms was due to the incorporation of *L. ferrea* samples, highlighting the potential of these materials for long-term use as antimicrobial packaging and/or wound dressings. The authors would like to thank FAPESB, UNEB, PGQA, UFBA, UFMG, and CAPES for their financial and institutional support, which was essential for the development of this research.

Keywords: Biofilms, Antibacterial, Fabaceae

Sociedade Brasileira de Química
Divisão de Produtos Naturais

